
www.manaraa.com

Teaching Web Development with Limited Resources

Ellen L. Walker
Mathematical Sciences Department

Hiram College
Hiram, OH 44234

walkerel@hiram.edu
http://hirame.hiram.edu/~walkerel

Logan Browne
Mathematical Sciences Department

Hiram College
Hiram, OH 44234

brownelc@hiram.edu

Abstract
Computer Science programs are faced with demand from

both students and employers for courses in hot topics such
as Internet Administration, but resources such as course
time and laboratory facilities are often scarce. Another
trend facing our programs is the need to increase
availability to non-traditional students. This paper
describes a course in Internet Administration for both
traditional and non-traditional students and how it
addressed the issues of limited time, diverse student
population, and limited laboratory facilities.

1. Introduction
Along with the growth in popularity of the World-Wide-

Web has come increased demand from both students and
employers for instruction in the techniques necessary to
develop and manage interactive web sites [7]. Web site
hosting is becoming a big business, requiring “technical
professionals who can handle a variety of servers,
platforms and applications” [4].

While students demand courses that will teach them the
current “hot topics” for their resume, departments are
naturally reluctant to take resources away from the “tried
and true” core curriculum. A common compromise,
especially for small departments that cannot afford to teach
many electives, is to put “hot topics” courses into mini-
terms, such as the “January term” in a 4-1-4 curriculum.
These courses are allotted only three to five weeks instead
of the usual quarter or semester.

A second trend in higher education can further constrain
these courses. As the number of traditional, full-time
undergraduates declines, colleges are trying to attract more
non-traditional students, such as working adults changing
careers. These students are also looking for practical
courses that can immediately enhance their careers. To
make such courses available to non-traditional students,

meetings must be further curtailed – limited to late evening
and weekend hours. Delivering much of the course over the
Internet can significantly increase the content available to
such students.

A third issue in providing a web development course is
that students need access to and control over their “own”
web servers. Neither the generally available campus
laboratory facilities nor the campus-wide web server are
appropriate for this use. Naturally, there is very little
budget for such facilities.

This paper describes the course, Internet Administration,
that meets the needs described above. The course was
taught in a three-week, weekend format, i.e. class met on
three Saturdays for six hours of lecture and presentations
and two hours of laboratory1. Students worked on a final
project entirely outside of class.

2. Course design
The primary goal of the course was to familiarize

students with the issues, tools, and techniques that a web
site administrator should know. These included both server-
side and client-side interactive programming techniques,
security issues, performance issues, and application areas.
The course was explicitly not a course in web design, but in
the underlying technologies on which a good web site rests.

2.1. Choice of Topics
To a large degree, the topics of the course were similar to

those presented by Lim [7]. Because of the short format of
the course, however, some material was necessarily
curtailed. The main topics that were curtailed or omitted in
this course were HTML and Java.

Through their experience in previous courses or on their
own, most students entered the Internet Administration
course with some background in HTML. Several students
had taken a non-majors’ introduction to the Internet where
they designed their own web pages. Although this course
was not a prerequisite, the Internet Administration course
description suggested that all students look over the notes
for this non-majors’ course, and build their own (non-
interactive) web page before beginning Internet
Administration. Thus, only the HTML commands for

1 Because of limited accommodations in the laboratory, the

traditional students met on Friday for their laboratory session.

www.manaraa.com

developing forms and the JavaScript extensions to HTML
were explicitly covered in Internet Administration.

No course for web developers would be complete
without a significant programming component. However,
the short format of the course precluded a complete in-
depth introduction to any programming language. In our
course, CGI-scripting with UNIX shell and Perl scripts was
covered, as was JavaScript. Both languages were taught by
example, rather than from first principles. These choices
provided one example each of server-side and client-side
interactive content. The Java programming language was
omitted because of the perceived amount of mastery
necessary to use the language, and also because Java was
not as different from the students’ experience in other
programming (C++) courses as Perl or JavaScript was.
Given the limited time in the course, we believed that
students would benefit more from limited instruction in the
other two technologies than they would from Java.

While the basics were covered, the more advanced and
specialized topics were covered only in student
presentations. This allowed students to study one topic in
depth, while hearing about all chosen topics.

2.2. Textbooks and Source Material
One of the difficulties in developing the Internet

Administration course was finding a reasonable textbook.
There were a great number of books on introductory
HTML and beginning Web page design, and many books
devoted to specific tools. No textbook contained both an
overview of the issues involved in administering a web site,
as well as sufficient specific examples to enable the reader
to learn to use the tools. The closest book was [11], which
was the only book with a truly server-oriented point of
view, and did have some examples of both server-side and
client-side scripting. In general, the students were satisfied
with this textbook.

To provide background on the tools, students were
required to purchase a reference book, [10], which
contained material on all the tools that were used in the
class. This book was chosen because of its relatively broad
coverage at low cost. The students were dissatisfied,
however, at the reference rather than tutorial style
presentation. Some students chose to purchase the deluxe
edition of [10], which included (on CD-ROM) textbooks on
the major tools from the same publisher. The students who
used the CD-ROM material found it extremely helpful; in
retrospect, this edition should have been required, or at
least more highly recommended.

Since neither textbook provided tutorial material on the
languages that students would be using, it was necessary to
supplement the textbooks with additional material. Freely
available tutorials were found on the web for HTML forms
[9], beginning CGI programming with Perl [5], and
JavaScript Programming [6]. Students used these along
with locally-written material in the laboratory assignments.

3. Course Delivery
In designing the course, the extreme limitation on contact

hours, the diversity of the students, and the shortened

format of the course all needed to be taken into
consideration. The final format of the course included
lectures, presentations, laboratory assignments, and a final
project. Three short quizzes tested students’ understanding
of the reading material, but there was no final exam. Given
the limited amount of time available for the course, it was
thought that time spent on laboratories and the final project
would be more valuable in the long run than time spent
studying for an exam.

All assignments for the course (both handouts and “hand-
ins”) were placed on the web. This made it easier for
students to access and submit assignments from home, their
office, or a college laboratory, and helped to accommodate
the diversity of students.

3.1. Lectures
Lectures were drawn from material in [11], including

history of the Internet and web, introduction to standards
such as HTTP and CGI, performance issues, security, and
web server setup. Interactive demonstrations of appropriate
web pages and scripts were also conducted during the
lecture portion of the course.

3.2. Presentations
In addition to the second and third weeks’ lectures,

students presented summaries of their own research on
tools and applications of web technology. Student topics
were chosen from a list of suggestions provided by the
instructor. Topics included data mining, intranets, firewalls,
and multimedia over the Internet. Groups consisted of five
to seven students, and each student had approximately five
minutes of material to present. These presentations gave
everyone in the class a brief overview of many important
topics that we didn’t have time to cover in depth, although
each student did in-depth research on one of the topics.
Most of the students included reference material for their
presentation topic on their course web page.

3.3. Laboratory Exercises
Lectures and presentations took up six hours per week of

class. The remaining two hours per week was devoted to
structured lab activities. Each laboratory exercise covered a
particular technology. There were two exercises on CGI
scripting with Perl, two on JavaScript, and one on password
protection.

Because of the severe time constraints on the course,
laboratories were geared more towards reading and
modifying code than toward writing code from scratch,
consistent with the desirable attributes of closed lab
activities [8]. Each laboratory assignment contained a
statement of the goals of the assignment, followed by
specific exercises. Most operated on a single example
program: first exercise the program, then make simple
modifications, and finally do a more significant extension
to the example. Where available, pointers were given to
available libraries, such as the Perl modules already
installed on the server.

 Perl examples included a Pig-Latin translator, a simple
spell-checker, and a simple flat-file database. The

www.manaraa.com

JavaScript example was a math test generator using cookies
to keep score. We attempted to make useful as well as
simple examples. The complete laboratory exercises are
available on the course web site (http://cs224.hiram.edu/).

Students were required to produce a laboratory writeup
(web page) for each laboratory assignment. These writeups
included descriptions of and pointers to the students’
solutions to the problems in the assignment.

The two-hour laboratory period was too short for most
students to finish the exercises. Therefore, students
completed their work outside of class, using their own
Internet connections if they weren’t on campus. Students
communicated with the instructor by e-mail and sometimes
telephone when they had difficulty with their assignments.
Interactive debugging of bad scripts was simplified by the
fact that all students’ work was on a single machine (to
which the instructor and TA had root access). For many
students, especially those with little UNIX experience,
more time in the laboratory would have been desirable.

3.4. Final Project
The culmination of the course was an individualized final

project, which consisted of a web page with interactive
content that each student developed using some of the tools
that we had covered in class. Many of these projects
required significant additional research. Example projects
include: an archeological walk-through of a house using
VRML technology, a Concentration game developed in
JavaScript, several forms-based database front ends, an
interactive computer system configuration tool, and a
computer system administrator’s tool (giving graphical
access to process and load information on a Unix machine).

Draft final projects were made available during the third
week of class, and students provided feedback on each
others’ projects to the instructor via a form. After removing
identifying information, this feedback was provided to the
authors so that they could modify their projects before final
submission. “Submission” of a project was simply an email
to the instructor that a project was ready for grading.

A complete project was a single web page with pointers
to the student’s original proposal, their interactive web
page project, all source files, and a writeup including a
technical description of the page itself, a description of the
development process, and a self-evaluation of the page.

4. Computing Facilities
In order to run the Internet Administration course as

described, it was necessary for each student to have access
to a web server, including the ability to create and install
CGI scripts. Neither the general-purpose student computing
laboratory nor the campus-wide public web server were
appropriate for this use, given that the students in the
course were likely to render their servers useless for at least
part of the time as they experimented. Logistically, the
easiest way to administer the course was to have a single
machine devoted to the course, including web servers for
the faculty, the TA, and each student. With 23 students in
the class, the machine would need to support approximately
25 web servers, as well as a peak load of 25 concurrent

users. This section describes how such a web server was
constructed and administered at very little cost.

4.1. Hardware Acquisition
At the time the course was planned, the “best” computer

available for the course was a workstation running Ultrix
under an 8-user license. Already, there was a plan to
construct a computer for the Computer Science Program
primarily from spare parts donated by the computer science
majors. The inadequacy of existing facilities for the
Internet Administration course provided the impetus for us
to assemble those parts into a working server.

Donations included a 100MHz Intel 486 and
motherboard, an old VGA monitor, an 850-megabyte hard
drive, a 64-bit video card, and a keyboard. This left us with
several pieces to purchase: a network interface card, a case,
and 64 megabytes of RAM. This system had a total cost of
about $250 – a very inexpensive server by any standard.

4.2. Operating System Choice and Configuration
Given the components of our server, it was no computing

powerhouse, especially considering the peak load of 25
concurrent users. The chosen operating system had to allow
for remote access the machine via the Internet, since many
of the students would not be on campus while doing their
projects. It also needed a file system that allowed for
security based on the user. The system had to handle a
separate web server for each of the 25 students, and to do
all this on an old Intel 486. Finally, the operating system
could not add significantly to the cost of the server. Linux
was one of the few operating systems that met our needs.

Linux is a free, Unix-like operating system that was
developed by thousands of programmers around the world.
Many groups have developed packages of software and the
operating system that are called Linux distributions. For the
purposes of our course, we desired a distribution that was
simple to set up with an easily navigable system of
organization. Red Hat Linux 5.0 met these needs.

Out of the box, Red Hat Linux 5.0 had all of the features
we needed (web, telnet and ftp servers, basic security, and
many powerful software development tools). The entire
installation process took only fifteen minutes.

After installing Linux with the default configuration, it
was clear that many security features were in place
(shadow passwords, detailed system logs, and strong file
protections); however, there were several changes that
needed to be made before we could let the students loose
on the system. These changes improved the security of the
system or made it easier for our users.

By default, the console had certain root privileges;
however, the location of our server in a public computer lab
made these permissions inappropriate. In particular, the
console user normally has the ability to immediately shut
down the system with a [Ctrl]-[Alt]-[Del] key sequence.
Since the OS catches these keys and initiates a graceful
shutdown, it was possible for us to print a warning on the
console and log the action, instead of shutting down.
Otherwise, a curious individual in the computer lab would

www.manaraa.com

have had the power to crash the machine out from under
the remote users!1

Before creating any user accounts on the system, we
made a template for the home directories in the directory
/etc/skel. Files and directories located there are
automatically copied to a new user’s home directory at
account creation. Each user was given a log directory
where the log files specific to their server would be kept. A
symbolic link, web, was also created in each user’s
directory that pointed to the content of their web server.

Other than these simple changes, the default Red Hat
configuration was quite usable for our purposes. We were
able to provide a customized server to the students on the
first day of class, after only about 2 days of configuration.

4.3. Web Server Choice and Configuration
Our choice of web server was Apache [1]. Apache is one

of the most commonly used web servers on the market
today, not only because it is free, but because it is simple to
configure, stable, and is now available for many computing
platforms. Even the Apache 1.3 beta for Win32 is
considered by many webmasters to be more stable that the
current version of Microsoft’s Internet Information Server
(IIS).

By default, Apache is well configured to operate as a
single site web server, but we needed something more for
our course. We didn’t feel that the students would have the
same experience if they shared a server, so we gave each
one a separate web server on this single machine. Each
student was given a port (above 8000), with its own server,
log files, and configuration [2]. Thus, the students had
administrative privilege to their individual server without
letting them roam free on the global server.

Besides having their own web servers, the student servers
needed the power to execute CGI scripts. Therefore, we
enabled CGI execution in each directory [3]. Although this
was a very insecure practice and dangerous to the server, it
was necessary for student experimentation. Given the
security risks, it was important to instruct the students at
the first class in how to write safe CGI scripts, and how to
keep scripts from being abused by malicious web surfers.
In fact, the risk on our machine was lowered by the fact
that the machine was newly connected to the Internet with a
name that was difficult to guess.

With only a few changes to the basic configuration to
improve compatibility with Windows systems, we began
the course with 25 individual servers, each with its own
powerful administrator. The simple and well-documented
configuration files of the Apache server made the entire
process fairly painless.

4.4. Problems and Future Changes
There were several problems that we discovered with our

server during the three-week run of this course. Many of
the problems that we encountered before the beginning of
this course have already been listed, with their solutions, in

1 Unfortunately, a crash was caused in this manner before we
made the configuration change. We removed the console
keyboard for additional safety.

the previous sections; however, there are some problems
for which we found no solution. These are areas where the
procedure will be changed in future courses.

One problem with the configuration of the server as
described above is that the students did not have their own
set of configuration files. All of the students use a system
set of httpd configuration files that can only be modified by
the root user. To give the students even more control over
their individual servers, we would like to give each student
server its own separate configuration files. This would
allow all of the students to get the full experience of
administering an Apache web server, and train them better
to be real Internet administrators.

Giving each student a set of configuration files would
also remedy the security problem of using non-script-
aliased CGI scripts. Each student could define a secured
script-aliased cgi-bin directory that would contain all of
their trusted scripts.

During the three weeks of this course, we logged about
50 hours worth of system maintenance time in repairing
various problems with the server. Most of this time was
spent repairing simple configuration oversights and altering
file permissions. More serious problems that developed led
to the changes described above.

5. Addressing Constraints
This section summarizes the constraints that made the

environment for the Internet Administration course less
than ideal, and how those constraints were addressed.
These constraints include resource constraints, time
constraints, and the diversity of the students in the class.

5.1. Resource Constraints
Of the three types of constraints, our approach to dealing

with resource constraints was most successful. The
constraints on available hardware and support personnel
were dealt with by building our own machine as described
in section 4, and in staffing the course with an
undergraduate (the second author of this paper) who served
both as teaching assistant and as system administrator.
This student’s association with this course dovetailed with
an independent-study course on Computer Security, so he
received both pay and credit for his effort.

5.2. Time Constraints
The time constraint was evident both in the number of

contact hours for the course (24, including laboratory time)
and the total “real time” that the students could use to
complete their work (approximately 4 weeks). The first
step in addressing this constraint was to pare the content of
the course. As discussed in Section 2.1, both HTML and
Java were entirely eliminated from the course.

Because of limitations on lecture time, Perl and
JavaScript weren’t taught in lecture from first principles,
but introduced directly in the lab. As mentioned in Section
3.3, the emphasis was on students’ reading and
modification of code. Although this is a more “real-world”
way of learning a language, some students complained
about having to teach themselves more of the tools to

www.manaraa.com

complete the project. We hope that these students will
realize the value of this experience in time.

A more significant issue was the lack of total time from
the beginning to the end of the course. Within the four
weeks from the first day of class to the last (one weekend
was skipped), it was difficult for the working students to
find enough time to complete all the coursework. Some of
the students took a day off work to finish their assignments.
This issue of time was less of a problem for traditional
students, who were able to devote full time to the course,
but still, there was less time for new concepts to sink in.

Adding more laboratory hours to the course would
somewhat alleviate the difficulties, as it would both
increase contact hours and decrease the number of outside
hours necessary for students to devote to the course.

5.3. Diversity of Students
The majority of the students’ complaints could be traced

to the diversity of the student population in the course.
Although the class was taught in a weekend format to
appeal to non-traditional students, it was also popular with
traditional students, so the class consisted of approximately
half traditional and half non-traditional students. While
traditional students could devote full-time effort to the
class, non-traditional students had to fit in their classwork
around full-time jobs. A second area of diversity was the
students’ computer science background. Programming
background varied from a single course in C++ to a nearly-
complete computer science major, and UNIX experience
ranged from complete novice to administrator.

Although the makeup of the course was known in
advance, the differences with regard to available time and
background knowledge were not planned for. The
laboratory assignments, in retrospect, were too long for the
non-traditional students, and not substantial enough for the
residential students. The level of presentation in class was
not detailed enough for students with little background, and
overly detailed for students with greater background.

The laboratory format helped somewhat in dealing with
differences in preparation. With two instructors (professor
and TA) in the lab for 12-15 students, individualized
attention was possible. In some, but not all, cases, extra
time in the laboratory was sufficient to overcome a lack of
background.

Because of the limited number of seats in the laboratory,
the traditional and weekend students were already
separated into two laboratory sessions. In retrospect, this
distinction could have been taken advantage of to provide
enrichment for the traditional students that had more time
to devote to the course.

To avoid the extreme disparity of preparation, more
specific prerequisites should have been enforced. Students
with no UNIX background should be required to take a
short course on UNIX before the Internet Administration
course. Similarly, students who need additional training in
Internet tools should have that provided outside of class,
preferably before the beginning of the regular class.

6. Conclusions
Despite the difficulties discussed here, many of the goals

of the course were accomplished. The students learned the
material, as evidenced by their performance, especially the
final projects. Several of the traditional students obtained
web administration jobs, and the feedback from these
students was quite positive. One student emailed during the
summer, “I am so thankful for the Perl that I picked up in
[Internet Administration] because that is pretty much what I
spend my time doing...” Another student has become
webmaster for the college computer center based on his
experience in the course. Students uniformly answered
positively to the statement “I learned a lot in this course.”

Efforts to overcome the lack of laboratory facilities by
constructing a computer were successful, while the time
constraints and student population diversity posed more
severe problems. Future improvements include increasing
laboratory time and strengthening course prerequisites.

7. Acknowledgements
The authors thank the Hiram Women’s Club for the

money to complete the course web server machine.

8. References
1. Apache Project, About the Apache HTTP Server

Project.
http://www.apache.org/ABOUT_APACHE.html

2. Apache Project, Apache IP-Based Virtual Host
Support.
http://www.apache.org/docs/vhosts/ip–based.html

3. Apache Project, Frequently Asked Question: How do I
enable CGI execution in directories other than the
ScriptAlias?
http://www.apache.org/docs/misc/FAQ.html

4. Gerwig, K, Business: the 8th layer: Web site
"outsourcing": go with the pros, netWorker: The Craft
of Network Computing, Vol. 2, No. 3 June 1998),
Pages 19-23.

5. Hamilton, J., Kira’s Web Toolbox – CGI Programming
101. http://lightsphere.com/dev/class/

6. Koch, S., Voodoo’s Introduction to JavaScript.
http://rummelplatz.uni–mannheim.de/~skoch/js/tutorial
.htm

7. Lim, Billy B.L. Teaching Web Development
Technologies in CS/IS curricula, in Proceedings of
SIGCSE ‘98, ACM, 1998.

8. Parker, B.C. and McGregor, J.D., A Goal-oriented
Approach to laboratory Development and
Implementation, in Proceedings of SIGCSE ‘95,
ACM, 1995.

9. Pero, C.A., Carlos’ Forms Tutorial.
http://robot0.ge.uiuc.edu/~carlosp/cs317/cft.html

10. Spanhour, S. and Quercia., V., Webmaster In a
Nutshell, O’Reilly Publishers, 1996.

11. Yeager, N.J. and McGrath, R.E., Web Server
Technology - The Advanced Guide for World Wide
Web Information Providers, Morgan Kauffman
Publishers, 1996.

